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We present a Gaussian ensemble of random cyclic matrices on the real field and study their spectral
fluctuations. These cyclic matrices are shown to be pseudosymmetric with respect to generalized parity. We
calculate the joint probability distribution function of eigenvalues and the spacing distributions analytically and
numerically. For small spacings, the level spacing distribution exhibits either a Gaussian or a linear form.
Furthermore, for the general case of two arbitrary complex eigenvalues, leaving out the spacings among real
eigenvalues, and, among complex conjugate pairs, we find that the spacing distribution agrees completely with
the Wigner distribution for a Poisson process on a plane. The cyclic matrices occur in a wide variety of
physical situations, including disordered linear atomic chains and the Ising model in two dimensions. These
exact results are also relevant to two-dimensional statistical mechanics and �-parametrized quantum
chromodynamics.
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With the pseudo-Hermitian extension of quantum me-
chanics �1–3�, it has become possible to develop a number of
new ideas, opening thereby interesting and important direc-
tions of investigation. One of these advances has been in
random matrix theory where pseudounitarily invariant en-
sembles were presented �4� that exhibit completely different
kinds of level repulsion as compared to the ensembles known
�5–7�. Thus, physical systems that violate parity and time-
reversal invariance �PT symmetric� exhibit level repulsion
that could be linear or �−S ln S where S is the nearest-
neighbor spacing of levels. However, an explicit analysis has
been done only for an ensemble of 2�2 matrices.

In this paper, we present random matrix theory �RMT� of
N�N cyclic matrices with real elements. As we shall show,
these matrices are pseudosymmetric with respect to “gener-
alized parity.” Such matrices arise in very significant con-
texts, the celebrated example being that of the Onsager solu-
tion of the two-dimensional Ising model �8,9�. They are
encountered in the treatment of linear atomic chains with the
Born–von Kármán boundary condition �10� and in under-
standing overlap matrices for molecules such as benzene.
These matrices also occur as transfer matrices in the theory
of disordered chains �11� and in the general context of wave
propagation in one-dimensional structures �12�. In the latter
example, generally, matrices of second order occur—thus,
our earlier results �13� throw light on the fluctuation proper-
ties of the eigenvalues. Cyclic matrices also appear in the
context of phase transitions in the spherical model �14�. In all
these varied instances, as soon as there is a random param-
eter �e.g., external field or a random coupling in the example
of the Ising model�, the level correlations dictate the long–
time tails of the time correlation functions which, in turn,
relate to the relaxation of these systems when they are per-
turbed from thermodynamic equilibrium �15�.

RMT appears in seemingly unrelated problems in physics
and mathematics ranging from growth models, directed poly-

mers, and random sequences, to the Riemann hypothesis
�16–18�. Also, the study of random matrices has been related
to quantum chaos and exactly solvable models in a remark-
able way �18–20�. Generically, the statistics of spectral fluc-
tuations of classically integrable, pseudointegrable, and cha-
otic systems follow, respectively, the general features of
Poisson, short-range Dyson �21,22� or semi-Poisson �23�
model, and Wigner-Dyson ensembles �24�. However, for the
physical situations occurring in two-dimensional statistical
mechanics where time reversal and parity are violated
�25,27–29�, there is no general understanding of the statisti-
cal nature of spectral fluctuations �30,31�. Perhaps the first
example of a billiard system with a PT-symmetric �violating
P and T� Hamiltonian was a particle enclosed in a rectangu-
lar cavity in the presence of an Aharonov-Bohm flux line
�32�. For this classically pseudointegrable system, the spec-
tral statistics of quantum energy levels was found to exhibit
level repulsion that is distinctly different from the standard
RMT �5�. For these classes of systems, an important step was
taken in Ref. �4�, and the present work takes us to show the
nature of these fluctuations in N�N cyclic matrices. The
general case of N�N random pseudo-Hermitian matrices
remains open, however.

Let us consider an N�N cyclic matrix with real elements
�ai�:

M = �
a1 a2 ¯ aN

aN a1 ¯ aN−1

]

a2 a3 ¯ a1

	 . �1�

It is important to note that this matrix is, in fact, pseudo-
Hermitian �pseudo-orthogonal� with respect to �

� = �
1 0 0 ¯ 0 0

0 0 0 ¯ 0 1

0 0 0 ¯ 1 0

]

0 1 0 ¯ 0 0
	 , �2�

that is,
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M† = MT = �M�−1. �3�

Since �2=identity I, � is introduced here as “generalized
parity.” Thus, we have an ensemble of random cyclic matri-
ces �RCMs� that is pseudo-orthogonally invariant in the
sense of Eq. �3�. There are two distinct scenarios with respect
to time reversal T and parity P: �a� the standard case where T
and P are preserved; this case is trivially PT symmetric and
�b� the case of PT symmetry where both T and P both are
broken. In case �a�, one may study the fluctuation properties
of energy levels after classifying the eigenfunctions accord-
ing to definite parity �odd or even�; however, case �b� be-
longs to a different class altogether. Whereas case �a� corre-
sponds to the invariant ensembles of random matrix theory
�5�, case �b� has not been fully studied, only some partial
results exist �4,13� and RCM belong to this case. The dis-
crete symmetries for operators represented by cyclic matrices
are clearly spelled out here. Due to this generality, our final
results are expected to be relevant for a wide variety of
physical situations occurring in anyon physics �25�,
�-parametrized quantum chromodynamics, fractional quan-
tum hall systems �26�, etc.

The eigenvalues of M are given by �33�

El = 

p=1

N

ap exp
2�i

N
�p − 1��l − 1� �4�

�l=1,2 , . . . ,N�, the maximum real eigenvalue being 
iai.
The diagonalizing matrix is given by �14�

Ujl =
1

�N
exp

2�i

N
�j − 1��l − 1� . �5�

We consider a Gaussian ensemble of cyclic matrices with a
distribution,

P�M� � exp − Atr�M† · M� , �6�

where A sets the scale �of energy, for instance�.

For the sake of simplicity, we present the analysis for an
ensemble of 3�3 matrices. We would like to obtain the joint
probability distribution function �JPDF� of eigenvalues be-
cause all the correlations are related to it. Also, we would
like to show results on the spacing distribution as they enjoy
a central place in discussions in quantum chaos, universality
arguments, and rule the dominant long-time tail in correla-
tion functions. We immediately see that tr M† ·M=3�a1

2+a2
2

+a3
2�. In effect, we have P��ai��= � 3A

� �3/2e−3A
iai
2
. There are

three eigenvalues—one real E1=
iai and one complex con-
jugate pair �E2 ,E

2
*�. We may define spacing as S23ª �E2

−E3�=�3�a3−a2� as well as S12ª �E1−E2�= � 3
2 �a2+a3�

+ i�3
2 �a2−a3��. Obviously, S12=S13. The JPDF of eigenvalues

P��Ei�� can be written as

P�E1,E2,E2
*� = 
A

�
�3/2

e−A�E1
2+2�E2�2�. �7�

With this JPDF, spacing distributions can be found �34�. The
spacing distribution for the complex conjugate pair PCC�S23�
is given by

PCC�S23� =� �
i=1

3

daiP��ai����S23 − �3�a3 − a2��

=�2A

�
e−�A/2�S23

2
. �8�

Using this, we may define an average spacing S23 through the
first moment and obtain finally a normalized spacing distri-
bution in terms of the variable z=S23 /S23:

pCC�z� =
2

�
e−z2/�. �9�

Similarly, the spacing distribution PRC�S12� is obtained:
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FIG. 1. Probability distribution of the absolute spacing between
the complex conjugate pair of eigenvalues of a Gaussian ensemble
of 3�3 cyclic matrices. The numerical result obtained by consid-
ering 10 000 realizations agrees with the analytic result �9�. The
Gaussian spacing distribution may be interpreted to give an accu-
mulation of eigenvalues resulting in a maximum at zero spacing,
but no tendency to cluster as the first derivative is zero. This is
different from a Poisson distribution.
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FIG. 2. Probability distribution of the absolute spacing between
a real and a complex eigenvalue of a Gaussian ensemble of 3�3
cyclic matrices. The numerical result obtained by considering
10 000 realizations for 3�3 matrices and 1000 realizations of
100�100 matrices agrees with the analytic result �11�. We observe
a linear level repulsion near zero spacing; however, the result is
distinctly different from the Wigner surmise for GOE.
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PRC�S12� =
4A
�3

S12e
−�4/3�S12

2
I0
2

3
AS12

2 � . �10�

The mean spacing turns out to be S12= 3
8
��

A c, where c
= 2F1� 3

4 , 5
4 ,1 , 1

4 �=1.31112. . .. Defining z=S12 /S12,

pRC�z� =
3�3�

16
c2z exp
−

3�

16
c2z2�I0
3�

32
c2z2� . �11�

We can now make following observations: �i� the Gaussi-
anity of pCC�z� implies that there is no level repulsion among
the complex conjugate pairs; and at the same time there is no
attraction and there is no tendency of clustering as in Pois-
sonian spacing distribution and �ii� real and complex eigen-
values display linear level repulsion. These results are also
borne out by the numerical simulations in Figs. 1 and 2.

For the general case of N�N matrices, we need to invert
Eq. �4�. This inversion leads us to the following relation:

ai = 

l

SilEl, �12�

where Sil=��i−1��N−�l−1�� and �=e2�i/N is a root of unity. S is
a symmetric matrix and S2=N�. Employing these relations,
we can find 
iai

2, and hence the following result for the
JPDF for even N:

P��Ei�� = 
A

�
�N/2

exp�− A
E1
2 + EN/2+1

2

+ 

i�1,N/2+1

N

EiEN+2−i�� , �13�

where E1 and EN/2+1 are real and the rest of the eigenvalues
may be complex. For odd N, the above result will hold ex-
cept that there will be only one real eigenvalue E1 and the
summation in the second term will extend over all i except 1.
Employing this general result on JPDF, we can now calculate
the spacing distributions for the general case. There are three
cases: �i� spacing among the complex conjugate pair of ei-
genvalues is found to be distributed again as a Gaussian, �ii�
spacing between a real and a complex eigenvalue is distrib-
uted according to Eq. �11�, and �iii� two complex eigenvalues
Ej =xj + iyj and Ek=xk+ iyk are spaced according to

p�s� =
��id Re Eid Im EiP��Ei�����Ej − Ek� − s�

��id Re Eid Im EiP��Ei��
, �14�

which reduces to the following integral on change of vari-
ables �����=x�y�k�x�y� j

p�s� =
A

�
� d�−d�−e−A��−

2+�−
2�����−

2 + �−
2 − s�

=
�s

2
exp
−

�s2

4
� �15�

which is exactly the Wigner distribution �Fig. 3�. Let us

recall that Wigner’s result holds exactly for 2�2 real sym-
metric matrices; it serves as an excellent approximation for
N�N, matrices, though. We also know that the spacing dis-
tribution for a Poissonian random process in a plane is ex-
actly the same as the Wigner surmise. Thus our result proves
that the complex eigenvalues of random cyclic matrices de-
scribe such a process. This is a very beautiful, nonintuitive
result which brings out yet another characteristic of RCM.

The eigenfunctions of M corresponding to the real eigen-
values �E1 and EN/2+1� are also simultaneously eigenfunc-
tions of “generalized parity” �. However, the eigenfunctions
of M corresponding to the complex conjugate pair of eigen-
values are not simultaneously eigenfunctions of �. Thus,
when these complex eigenvalues occur, “generalized parity”
is said to be spontaneously broken. Also, the eigenfunctions
corresponding to the complex conjugate pair of eigenvalues
have zero PT norm. This is expected from the recent works
�1,17� on PT-symmetric quantum mechanics. This observa-
tion then fully embeds our findings into the new random
matrix theory developed recently for pseudo-Hermitian
Hamiltonians. However, we also note that the eigenvectors
	1 �	2� corresponding to complex conjugate eigenvalues 

�
*� satisfy orthogonality defined with respect to �. Since
these results are found for N�N matrices, we believe that
this work extends the random matrix theory in a significant
way. The findings on the spacing distributions have led us to
a linear level repulsion among distinct complex eigenvalues,
whereas the spacing between the complex conjugate pair is
Gaussian distributed.

The Ginibre orthogonal ensemble with Gaussian distrib-
uted real elements has been completely solved only recently
�35,36�. The ensemble of asymmetric random cyclic matrices
is a simple nontrivial instance for which all the interesting
quantities are analytically obtained in an explicit manner.
Such examples play an important role in developing a deeper
insight, even when formal results exist.

Also, we would like to point out the role played by level
repulsion when a system with spectral properties described
by RMT approaches equilibrium. In its approach to equilib-
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FIG. 3. We observe a linear level repulsion between two eigen-
values which are neither real nor complex conjugate pairs for an
ensemble of 100�100 matrices with 5000 realizations. The agree-
ment with GOE is deceptive; in fact, this suggests that the eigen-
values describe a Poisson process on a plane.
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rium, the central quantity of interest is the two-time correla-
tion function; the long-time behavior is decided by the de-
gree of level repulsion as the levels get closer. We can
immediately see �15� that linear level repulsion is related to
the exponent 2 in the t−2 tail at long times.

It is a great pleasure to thank Bob Dorfman, University
of Maryland, College Park, for bringing to our attention the
role played by cyclic matrices in certain models in statistical
mechanics, the work of Ted Berlin and Mark Kac �14� in
particular.
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